On the least signless Laplacian eigenvalue of a non-bipartite connected graph with fixed maximum degree

نویسندگان

  • Shu-Guang Guo
  • Rong Zhang
چکیده

In this paper, we determine the unique graph whose least signless Laplacian eigenvalue attains the minimum among all non-bipartite unicyclic graphs of order n with maximum degree Δ and among all non-bipartite connected graphs of order n with maximum degree Δ, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bipartite Subgraphs and the Signless Laplacian Matrix

For a connected graph G, we derive tight inequalities relating the smallest signless Laplacian eigenvalue to the largest normalised Laplacian eigenvalue. We investigate how vectors yielding small values of the Rayleigh quotient for the signless Laplacian matrix can be used to identify bipartite subgraphs. Our results are applied to some graphs with degree sequences approximately following a pow...

متن کامل

Ela the Least Eigenvalue of the Signless Laplacian of Non-bipartite Unicyclic Graphs with K Pendant Vertices

Let U(n, k) be the set of non-bipartite unicyclic graphs with n vertices and k pendant vertices, where n ≥ 4. In this paper, the unique graph with the minimal least eigenvalue of the signless Laplacian among all graphs in U(n, k) is determined. Furthermore, it is proved that the minimal least eigenvalue of the signless Laplacian is an increasing function in k. Let Un denote the set of non-bipar...

متن کامل

The least eigenvalue of the signless Laplacian of non-bipartite unicyclic graphs with k pendant vertices

Let U(n, k) be the set of non-bipartite unicyclic graphs with n vertices and k pendant vertices, where n ≥ 4. In this paper, the unique graph with the minimal least eigenvalue of the signless Laplacian among all graphs in U(n, k) is determined. Furthermore, it is proved that the minimal least eigenvalue of the signless Laplacian is an increasing function in k. Let Un denote the set of non-bipar...

متن کامل

A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph

We prove that the minimum value of the least eigenvalue of the signless Laplacian of a connected nonbipartite graph with a prescribed number of vertices is attained solely in the unicyclic graph obtained from a triangle by attaching a path at one of its endvertices. © 2008 Elsevier Inc. All rights reserved. AMS classification: 05C50

متن کامل

Ela Quadratic Forms on Graphs with Application to Minimizing the Least Eigenvalue of Signless Laplacian over Bicyclic Graphs

Given a graph and a vector defined on the graph, a quadratic form is defined on the graph depending on its edges. In order to minimize the quadratic form on trees or unicyclic graphs associated with signless Laplacian, the notion of basic edge set of a graph is introduced, and the behavior of the least eigenvalue and the corresponding eigenvectors is investigated. Using these results a characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017